discrete Fourier transform - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

discrete Fourier transform - перевод на русский

TECHNIQUE USED IN ADVANCED MATHEMATICS
Discrete fourier transform; Generalized discrete Fourier transform; Discrete Fourier Transform; Shifted DFT; Centered DFT; Offset DFT; DTFS; Inverse discrete Fourier transform; Circular convolution theorem; Cross-correlation theorem; Circular cross-correlation
  • Discrete transforms embedded in time & space.
  • Fig 2: Depiction of a Fourier transform (upper left) and its periodic summation (DTFT) in the lower left corner.  The spectral sequences at (a) upper right and (b) lower right are respectively computed from (a) one cycle of the periodic summation of s(t) and (b) one cycle of the periodic summation of the s(nT) sequence.  The respective formulas are (a) the [[Fourier series]] <u>integral</u> and (b) the '''DFT''' <u>summation</u>.  Its similarities to the original transform, S(f), and its relative computational ease are often the motivation for computing a DFT sequence.
  • FFT]] algorithm computes one cycle of the DFT and its inverse is one cycle of the DFT inverse.
Найдено результатов: 384
discrete Fourier transform         
дискретное преобразование Фурье, ДПФ
number-theoretic transform         
GENERALIZATION OF FOURIER TRANSFORM TO ANY RING
Number-theoretic transform; Number theoretic transform; Discrete weighted transform; Discrete Fourier transform (general)
теоретико-числовое преобразование
interaction algorithm         
  • An example FFT algorithm structure, using a decomposition into half-size FFTs
  • A discrete Fourier analysis of a sum of cosine waves at 10, 20, 30, 40, and 50&nbsp;Hz
  • Time-based representation (above) and frequency-based representation (below) of the same signal, where the lower representation can be obtained from the upper one by Fourier transformation
O(N LOGN) DIVIDE AND CONQUER ALGORITHM TO CALCULATE THE DISCRETE FOURIER TRANSFORMS
Fast Fourier Transform; Fast fourier transform; Fast Fourier Transforms; IFFT; FFT; Arithmetic complexity of the discrete Fourier transform; FFT complexity; FFT algorithm; Arithmetic complexity of the discrete fourier transform; Fast fourier; Fast Fourier; Approximations of the fast Fourier transform; Applications of the fast Fourier transform; Interaction algorithm; Inverse fast fourier transform; Multidimensional fast Fourier transform

математика

алгоритм взаимодействия

fast Fourier transform         
  • An example FFT algorithm structure, using a decomposition into half-size FFTs
  • A discrete Fourier analysis of a sum of cosine waves at 10, 20, 30, 40, and 50&nbsp;Hz
  • Time-based representation (above) and frequency-based representation (below) of the same signal, where the lower representation can be obtained from the upper one by Fourier transformation
O(N LOGN) DIVIDE AND CONQUER ALGORITHM TO CALCULATE THE DISCRETE FOURIER TRANSFORMS
Fast Fourier Transform; Fast fourier transform; Fast Fourier Transforms; IFFT; FFT; Arithmetic complexity of the discrete Fourier transform; FFT complexity; FFT algorithm; Arithmetic complexity of the discrete fourier transform; Fast fourier; Fast Fourier; Approximations of the fast Fourier transform; Applications of the fast Fourier transform; Interaction algorithm; Inverse fast fourier transform; Multidimensional fast Fourier transform
быстрое преобразование Фуpье, БПФ
Fourier transformation         
  • chord]]. The first three peaks on the left correspond to the frequencies of the [[fundamental frequency]] of the chord (C, E, G). The remaining smaller peaks are higher-frequency [[overtone]]s of the fundamental pitches. A [[pitch detection algorithm]] could use the relative intensity of these peaks to infer which notes the pianist pressed.
  • Some problems, such as certain differential equations, become easier to solve when the Fourier transform is applied. In that case the solution to the original problem is recovered using the inverse Fourier transform.
  • Animation showing the Fourier Transform of a time shifted signal. [Top] the original signal (yellow), is continuously time shifted (blue). [Bottom] The resultant Fourier Transform of the time shifted signal. Note how the higher frequency components revolve in complex plane faster than the lower frequency components.
  • The [[rectangular function]] is [[Lebesgue integrable]].
  • The [[sinc function]], which is the Fourier transform of the rectangular function, is bounded and continuous, but not Lebesgue integrable.
MATHEMATICAL TRANSFORM THAT EXPRESSES A FUNCTION OF TIME AS A FUNCTION OF FREQUENCY
Fourier Transform; Fourier integral; Fourier transforms; Fourier transformation; Reality condition; ℱ; Continuous fourier transform; Continuous Fourier transform; CTFT; Forier transform; Fourier Transformation; Fourrier transform; Fourier shift theorem; List of Fourier transforms; Fourier wave analysis; Fourier uncertainty principle; Fourier component; Fourier transformations; Table of Fourier transforms; Fourier components; F-hat; Continuous-time Fourier transform
преобразование Фурье, разложение в ряд Фурье
Fourier transform         
  • chord]]. The first three peaks on the left correspond to the frequencies of the [[fundamental frequency]] of the chord (C, E, G). The remaining smaller peaks are higher-frequency [[overtone]]s of the fundamental pitches. A [[pitch detection algorithm]] could use the relative intensity of these peaks to infer which notes the pianist pressed.
  • Some problems, such as certain differential equations, become easier to solve when the Fourier transform is applied. In that case the solution to the original problem is recovered using the inverse Fourier transform.
  • Animation showing the Fourier Transform of a time shifted signal. [Top] the original signal (yellow), is continuously time shifted (blue). [Bottom] The resultant Fourier Transform of the time shifted signal. Note how the higher frequency components revolve in complex plane faster than the lower frequency components.
  • The [[rectangular function]] is [[Lebesgue integrable]].
  • The [[sinc function]], which is the Fourier transform of the rectangular function, is bounded and continuous, but not Lebesgue integrable.
MATHEMATICAL TRANSFORM THAT EXPRESSES A FUNCTION OF TIME AS A FUNCTION OF FREQUENCY
Fourier Transform; Fourier integral; Fourier transforms; Fourier transformation; Reality condition; ℱ; Continuous fourier transform; Continuous Fourier transform; CTFT; Forier transform; Fourier Transformation; Fourrier transform; Fourier shift theorem; List of Fourier transforms; Fourier wave analysis; Fourier uncertainty principle; Fourier component; Fourier transformations; Table of Fourier transforms; Fourier components; F-hat; Continuous-time Fourier transform

медицина

преобразование Фурье

Fourier analysis         
BRANCH OF MATHEMATICS REGARDING PERIODIC AND CONTINUOUS SIGNALS
Fourier synthesis; Fourier Analysis; Relations between Fourier transforms and Fourier series; Relations between Fourier Trasform, Fourier Series, DTFT and DFT; Relations between Fourier Transform, Fourier Series, DTFT and DFT; Relations among the continuous Fourier transform, the Fourier series, the discrete-time Fourier transform and the discrete Fourier transform; Relations among the continuous Fourier transform, the Fourier series, the DTFT and the DFT; Relations between fourier transforms and fourier series; Elliptic fourier analysis; Applications of Fourier analysis; History of Fourier analysis

общая лексика

гармонический анализ

анализ Фурье

iDCT         
  • JPEG DCT]]
  • An example showing eight different filters applied to a test image (top left) by multiplying its DCT spectrum (top right) with each filter.
  • 310x310px
  • 336x336px
TECHNIQUE REPRESENTING DATA AS SUMS OF COSINE FUNCTIONS
Discrete Cosine Transform; Inverse discrete cosine transform; IDCT; DCT (math); Fast cosine transform; Inverse cosine transform; Fast Cosine Transform; Applications of the discrete cosine transform

Смотрите также

IDCT

IDCT         
  • JPEG DCT]]
  • An example showing eight different filters applied to a test image (top left) by multiplying its DCT spectrum (top right) with each filter.
  • 310x310px
  • 336x336px
TECHNIQUE REPRESENTING DATA AS SUMS OF COSINE FUNCTIONS
Discrete Cosine Transform; Inverse discrete cosine transform; IDCT; DCT (math); Fast cosine transform; Inverse cosine transform; Fast Cosine Transform; Applications of the discrete cosine transform

общая лексика

(Indirect Discrete Cosine Transform) обратное дискретное косинусное преобразование

используется при декодировании сжатых данных

(inverse discrete cosine transform) инверсное дискретное косинусное преобразование

синоним

iDCT

Смотрите также

cumulative throughflow; fractional throughflow

z-transformation         
MATHEMATICAL TRANSFORM WHICH CONVERTS SIGNALS FROM THE TIME DOMAIN TO THE FREQUENCY DOMAIN
Z transform; Laurent transform; Bilateral Z-transform; Bilateral z-transform; Z Transform; Z-domain; Z-transformation

математика

дискретное преобразование Лапласа

z-преобразование

Определение

ФУРЬЕ, ЖАН БАТИСТ ЖОЗЕФ
(Fourier, Jean Baptiste Joseph) (1768-1830), французский математик и физик. Родился 21 марта 1768 в Осере, где окончил Военную школу; работал там же. В 1796-1798 преподавал в Нормальной и Политехнической школах - двух новых высших учебных заведениях Парижа. В 1798 вместе с другими учеными принял участие в Египетском походе Наполеона. По возвращении во Францию в 1802 был назначен префектом департамента Изер со штаб-квартирой в Гренобле. Здесь Фурье написал свой основной труд - Аналитическая теория тепла (Thorie analytique de la chaleur, 1822), в котором изложена математическая теория теплопроводности. Эта теория послужила основой современных методов математической физики, относящихся к интегрированию уравнений в частных производных при заданных граничных условиях. Метод Фурье состоял в представлении функций в виде тригонометрических рядов (рядов Фурье) и нашел широкое применение в различных разделах физики и математики. Помимо этого, Фурье построил первую математическую теорию теплового излучения, впервые применил формулы размерностей. В 1823 независимо от Х.Эрстеда открыл термоэлектрический эффект, показал, что он обладает свойством суперпозиции, создал первый термоэлектрический элемент.
В 1808 Фурье получил титул барона и был награжден орденом Почетного легиона. В 1817 был избран членом Парижской Академии наук, с 1822 был ее секретарем. Состоял членом Петербургской Академии наук и Лондонского королевского общества.
Умер Фурье в Париже 16 мая 1830.

Википедия

Discrete Fourier transform

In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence. An inverse DFT (IDFT) is a Fourier series, using the DTFT samples as coefficients of complex sinusoids at the corresponding DTFT frequencies. It has the same sample-values as the original input sequence. The DFT is therefore said to be a frequency domain representation of the original input sequence. If the original sequence spans all the non-zero values of a function, its DTFT is continuous (and periodic), and the DFT provides discrete samples of one cycle. If the original sequence is one cycle of a periodic function, the DFT provides all the non-zero values of one DTFT cycle.

The DFT is the most important discrete transform, used to perform Fourier analysis in many practical applications. In digital signal processing, the function is any quantity or signal that varies over time, such as the pressure of a sound wave, a radio signal, or daily temperature readings, sampled over a finite time interval (often defined by a window function). In image processing, the samples can be the values of pixels along a row or column of a raster image. The DFT is also used to efficiently solve partial differential equations, and to perform other operations such as convolutions or multiplying large integers.

Since it deals with a finite amount of data, it can be implemented in computers by numerical algorithms or even dedicated hardware. These implementations usually employ efficient fast Fourier transform (FFT) algorithms; so much so that the terms "FFT" and "DFT" are often used interchangeably. Prior to its current usage, the "FFT" initialism may have also been used for the ambiguous term "finite Fourier transform".

Как переводится discrete Fourier transform на Русский язык